LU B H, LI D C. Development of the additive manufacturing (3D printing) technology. Machine Building Automation, 2013, (4): 1-4.
LI D C, HE J K, TIAN X Y et al. Additive manufacturing: integrated fabrication of macro/micro-structures. Journal of Mechanical Engineering. 2013, (6):129-135.
WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components. Acta Aeronautica Et Astronautica Sinica, 2014, 35(10): 2690-2698.
CAIAZZO F, CARDAROPOLI F, ALFIERI V, et al. Experimental analysis of selective laser melting process for Ti-6Al-4 V turbine blade manufacturing. 19th International Symposium on High-Power Laser Systems and Applications (HPLS&A), 2012.
YAN C, HAO L, HUSSEIN A, et al. Ti6Al4 V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51: 61-73.
ZHAO J F, MA Z Y, XIE D Q, et al. Metal additive manufacturing technique. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(5): 675-683.
THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4 V. Acta Materialia, 2010, 58(9): 3303-3312.
RAFI H K, STARR T L, STUCKER B E. A comparison of the tensile, fatigue, and fracture behavior of Ti6Al4 V and 15-5 PH stainless steel parts made by selective laser melting. The International Journal of Advanced Manufacturing Technology, 2013, 69(5-8): 1299-1309.
CARTER L N, ATTALLAH M M, REED R C. Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterization, quantification and mitigation of cracking. 12th International Symposium on Superalloys, 2012: 795-802.
JIA Q B, GU D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. Journal of Alloys and Compounds, 2014, 585: 713-721.
GU D D, SHEN Y F. Research statues and technical of rapid manufacturing of metallic part by selective laser melting. Aeronautical Manufacturing Technology, 2012(8): 32-37.
ZHAO G Y, WANG D D, BAI P K, et al. Research progress of laser rapid prototyping technology for aluminum alloy. Hot Working Technology, 2010, 39(9): 170-173,177.
LI R D, LIU J H, SHI Y S, et al. 316L stainless steel with gradient porosity fabricated by selective laser melting. Journal of Materials Engineering and Performance, 2010, 19(5): 666-671.
YADROISEV I, GUSAROV A, YADROITSAVAI, et al. Single track formation in selective laser melting of metal powders[J]. Journal of Materials Processing Technology, 2010, 210(12): 1624-1631.
WU W H, YANG Y Q, LAI K X. Process analysis of rapid prototyping with selective laser melting. Journal of South China University of Technology (Natural Science Edition), 2007(3):22-27.
HUSSEIN A, HAO L, YAN C, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Materials & Design, 2013, 52: 638-647.
VRANCKEN B, THIJS L, KRUTH J, et al. Heat treatment of Ti6Al4 V produced by selective laser melting: microstructure and mechanical properties. Journal of Alloys and Compounds, 2012, 541: 177-185.
XU W, SUN S, ELAMBASSERIL J, et al. Ti6Al4 V additively manufactured by selective laser melting with superior mechanical properties. JOM, 2015, 67(3): 668-673.
ZHANG X B, DANG X A, YANG L Y. Study on balling phenomena in selective laser melting. Laser and Optoelectronics Progress, 2014(6): 131-136.
THIJS L, KEMPEN K, KRUTH J, et al. Fine-structured aluminum products with controllable texture by selective laser melting of pre-alloyed AlSi10 Mg powder. Acta Materialia, 2013, 61(5): 1809-1819.
GONG H J, RAFI K, KARTHIK N V, et al. Defect morphology of Ti-6Al-4 V parts fabricated by selective laser melting and electron beam melting. International Solid Freeform Fabrication Symposium, 2013.
GU D D, HAGEDORN Y, MEINERS W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Materialia, 2012, 60(9): 3849-3860.
ABOULKHAIR N T, EVERITT N M, ASHCROFT I, et al. Reducing porosity in AlSi10 Mg parts processed by selective laser melting. Additive Manufacturing, 2014, 1-4: 77-86.
VILARO T, COLIN C, BARTOUT J D. As-fabricated and heat-treated microstructures of the Ti6Al4 V alloy processed by selective laser melting. Metallurgical and Materials Transactions A, 2011, 42(10): 3190-3199.
KEMPEN K, THIJS L, VAN H J, et al. Processing AlSi10 Mg by selective laser melting: parameter optimization and material characterization. Materials Science and Technology, 2014, 31(8): 917-923.
KEMPEN K, VRANCKEN B, BULS S, et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating. Journal of Manufacturing Science and Engineering, 2014, 136(6).
CARTER L N, ESSA K, ATTALLAH M M. Optimization of selective laser melting for a high temperature Ni-superalloy. Rapid Prototyping Journal, 2015, 21(4): 423-432.
QIU C L, ADKINS N J E, ATTALLAH M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti6Al4 V. Materials Science and Engineering: A, 2013, 578: 230-239.
GONG H J, RAFI K, GU H F, et al. Analysis of defect generation in Ti6Al4 V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 2014, 1-4: 87-98.
RAFI H K, KARTHIK N V, Gong H J, et al. Microstructures and mechanical properties of Ti6Al4 V parts fabricated by selective laser melting and electron beam melting. Journal of Materials Engineering and Performance, 2013, 22(12): 3872-3883.
WEINGARTEN C, BUCHBINDER D, PIRCH N, et al. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10 Mg. Journal of Materials Processing Technology, 2015, 221: 112-120.
ROLINKG, VOGT S, SENCEKOVA L, et al. Laser metal deposition and selective laser melting of Fe-28 at.% Al. Journal of Materials Research, 2014, 29(17): 2036-2043.
WANG L, WEI Q S, HE W T, et al. Influence of powder characteristic and process parameters on SLM formability. Journal of HuaZhong University of Science and Technology (Natural Science Edition), 2012, 40(6): 20-23.
WEN S F, LI S, WEI Q S, et al. Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. Journal of Materials Processing Technology, 2014, 214(11): 2660-2667.
WU W H, YANG Y Q, WANG D. Balling phenomenon in selective laser melting process. Journal of South China University of Technology (Natural Science Edition), 2010(5): 110-115.
GU D D, SHEN Y F. Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Materials & Design, 2009, 30(8): 2903-2910.
LIU Q C, ELAMBASSERIL J, SUN S J, et al. The effect of manufacturing defects on the fatigue behavior of Ti6Al4 V specimens fabricated using selective laser melting. Advanced Materials Research, 2014, 891-892: 1519-1524.
ZHOU X, WANG D, LIU X, et al. 3D-imaging of selective laser melting defects in a Co-Cr-Mo alloy by synchrotron radiation micro-CT. Acta Materialia, 2015, 98: 1-16.
READ N, WANG W, ESSA K, et al. Selective laser melting of AlSi10 Mg alloy: process optimization and mechanical properties development. Materials & Design, 2015, 65: 417-424.
ZHANG S, GUI R Z, WEI Q S, et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting. Journal of Mechanical Engineering, 2013, 49(23): 21-27. (in Chinese)
LI R D, SHI Y S, WANG Z G, et al. Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Applied Surface Science, 2010, 256(13): 4350-4356.
ZHAO X, LIN X, CHEN J, et al. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming. Materials Science and Engineering: A, 2009, 504(1-2): 129-134.
CHEN J, LIN X, WANG T, et al. The hot cracking mechanism of 316L stainless steel cladding in rapid laser forming process. Rare Metal Materials and Engineering, 2003, 32(23): 183-186.
HABOUDOU A, PEYRE P, VANNES A B, et al. Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminum alloys. Materials Science and Engineering: A, 2003, 363(1-2): 40-52.
CARTER L N, WANG X, READ N, et al. Process optimization of selective laser melting using energy density model for nickel based superalloys. Materials Science and Technology, 2015: 1-5.
YADROITSEV I, BERTRAND P, SMUROV I. Parametric analysis of the selective laser melting process. Applied Surface Science, 2007, 253(19): 8064-8069.
GONG H J, RAFI K, GU H F, et al. Influence of defects on mechanical properties of Ti6Al4 V components produced by selective laser melting and electron beam melting. Materials & Design, 2015, 86: 545-554.
XU W, BRANDT M, SUN S, et al. Additive manufacturing of strong and ductile Ti6Al4 V by selective laser melting via in situ martensite decomposition. Acta Materialia, 2015, 85: 74-84.
ZHANG S, WEI Q S, CHENG L Y, et al. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4 V implants fabricated by selective laser melting. Materials & Design, 2014, 63: 185-193.
SONG B, DONG S J, ZHANG B C, et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4 V. Materials & Design, 2012, 35: 120-125.
VANDENBROUCKE B, KRUTH J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal, 2007, 13(4): 196-203.
LEUDERS S, LIENEKE T, LAMMERS S, et al. On the fatigue properties of metals manufactured by selective laser melting-the role of ductility. Journal of Materials Research, 2014, 29(17): 1911-1919.
WANG D, YANG Y Q, SU X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. The International Journal of Advanced Manufacturing Technology, 2012, 58(9-12): 1189-1199.
KURZYNOWSKI T, CHLEBUS E, KUZNICKA B, et al. Parameters in selective laser melting for processing metallic powders. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2012:823914-823914-6.
KEMPEN K, THIJS L, YASA E, et al. Process optimization and microstructural analysis for selective laser melting of AlSi10 Mg. Proceedings Solid Freeform Fabrication Symposium, Texas, USA. 2011
KEMPEN K, THIJS L, VAN H J, et al. Mechanical properties of AlSi10 Mg produced by selective laser melting. Physics Procedia, 2012, 39: 439-446.
MASKERY I, ABOULKHAIR N T, CORFIELD M R, et al. Quantification and characterization of porosity in selectively laser melted Al-Si10-Mg using X-ray computed tomography. Materials Characterization, 2016, 111: 193-204.
BAUEREISS A, SCHAROWSKY T, KOERNER C. Defect generation and propagation mechanism during additive manufacturing by selective beam melting. Journal of Materials Processing Technology, 2014, 214(11): 2522-2528.
WANG D, YANG Y Q, HUANG Y L, et al. Density improvement of metal parts directly fabricated via selective laser melting. Journal of South University of Technology (Natural Science Edition), 2010(6): 107-111.
YANG Y Q, SONG C H, WANG D. Selective laser melting and its application on personalized medical parts. Journal of Mechanical Engineering, 2014(21): 140-151.
ATTAR H, CALIN M, ZHANG L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A, 2014, 593: 170-177.
SIMONELLI M, TSE Y Y, TUCK C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4 V. Materials Science and Engineering: A, 2014, 616: 1-11.
LEUDERS S, THONE M, RIEMER A, et al. On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance. International Journal of Fatigue, 2013, 48: 300-307.
FACCHINI L, MAGALINI E, ROBOTTI P, et al. Ductility of a Ti6Al4 V alloy produced by selective laser melting of pre-alloyed powders. Rapid Prototyping Journal, 2010, 16(6): 450-459.
KASPEROVICH G, HAUSMANN J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. Journal of Materials Processing Technology, 2015, 220: 202-214.
WU M W, LAI P, CHEN J. Anisotropy in the impact toughness of selective laser melted Ti6Al4 V alloy. Materials Science and Engineering: A. 2016, 650: 295-299.
CHLEBUS E, KUZNICKA B, KURZYNOWSK T, et al. Microstructure and mechanical behavior of Ti6Al7Nb alloy produced by selective laser melting. Materials Characterization, 2011, 62(5): 488-495.
EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti6Al4 V. Materials Science and Engineering: A, 2014, 598: 327-337.
HOOREWEDER B V, BOONEN R, MOENS D, et al. On the determination of fatigue properties of Ti6Al4 V produced by selective laser melting. Journal of Thermal Analysis & Calorimetry, 2013, 113(113): 97-103.
REKEDAL K D, LIU D. Fatigue Life of selective laser melted and hot isostatically pressed Ti6Al4 V absent of surface machining. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech, AIAA 2015-0894.
WYCISK E, EMMELMANN C, SIDDIQUE S, et al. High cycle fatigue (HCF) performance of Ti6Al4 V alloy processed by selective laser melting. Advanced Materials Research, 2013, 816-817: 134-139.
WYCISK E, SOLBACH A, SIDDIQUE S, et al. Effects of defects in laser additive manufactured Ti6Al4 V on fatigue properties. Physics Procedia, 2014, 56: 371-378.
LEUDERS S, VOLLMER M, BRENNE F, et al. Fatigue strength prediction for titanium alloy TiAl6V4 manufactured by selective laser melting. Metallurgical & Materials Transactions A, 2015, 46A(9): 3816-3823.
CLIJSTERS S, CRAEGHS T, BULS S, et al. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. The International Journal of Advanced Manufacturing Technology, 2014, 75(5-8): 1089-1101.
PANWISAWAS C, QIU C L, SOVANI Y, et al. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scripta Materialia, 2015, 105: 14-17.